Вариант 4.

- **1.** В декартовой прямоугольной системе координат даны вершины пирамиды A_1, B_1, C_1, D_1 . Найдите:
 - а) длину ребра A_1B_1 ;
 - б) косинус угла между векторами $\overline{A_1B_1}u\overline{A_1C_1}$;
 - в) уравнение ребра A_1B_1 ;
 - Γ) уравнение грани $A_1B_1C_1$;
- д) уравнение высоты, опущенной из вершины D_1 на грань $A_1B_1C_1;$
- е) координаты векторов $\overline{e_1}=\overline{A_1B_1}$, $\overline{e_2}=\overline{A_1C_1}$, $\overline{e_3}=\overline{A_1D_1}$ и докажите, что они образуют линейно независимую систему;
- ж) координаты вектора $\overline{\mathit{MN}}$, где M и N середины ребер A_1D_1 и B_1C_1 соответственно;
 - 3) разложение вектора \overline{MN} по базису ($\overline{e_1},\overline{e_2},\overline{e_3}$), если

$$A_1(2, 1, -4), B_1(-3, -5, 6), C_1(0, -3, -1), D_1(-5, 2, -8).$$

- 2. Решите систему линейных уравнений
 - а) методом Крамера;
 - б) методом Гаусса;
 - в) с помощью обратной матрицы.

$$\begin{cases} 2x - 3y + z = 1, \\ x + y + z = 6, \\ x - y - z = 0. \end{cases}$$

- **3.** К экзамену приготовлено 24 одинаковых ручки. Известно, что треть из них имеет фиолетовый стержень, остальные синий стержень. Случайным образом отбирают три ручки. Вычислить вероятность того, что:
- а) все ручки имеют фиолетовый стержень; б) только одна ручка имеет фиолетовый стержень.
- **4.** Пассажир может приобрести билет в одной из двух касс. Вероятность обращения в первую кассу составляет 0,4, а во вторую 0,6. Вероятность того, что к моменту приходя пасажира нужные ему билеты будут распроданы, равна 0,35 для первой кассы и 0,7 для второй. Пассажир посетил одну из касс и приобрел билет. Какова вероятность того, что он приобрел его во второй кассе?
- **5.** Задан закон распределения дискретной случайной величины X:

	-2	- 1	0	1	2	3	4
p	p	0,29	0,12	0,15	0,21	0,16	0,04

Найдите:

- а) неизвестную вероятность p;
- б) математическое ожидание M, дисперсию D и среднее квадратическое отклонение σ данной случайной величины;
 - в) функцию распределения F(x) и построить её график;
- г) закон распределения случайной величины Y, если её значения заданы функциональной зависимостью y = /x /.
- **6.** По данным телеателье установлено, что в среднем 20% цветных телевизоров выходят из строя в течение гарантийного срока. Какова вероятность того, что из 225 проданных цветных телевизоров будут работать исправно в течение гарантийного срока: а) 164 телевизора; б) от 172 до 184 телевизоров.