Вариант 0.

- **1.** В декартовой прямоугольной системе координат даны вершины пирамиды A_1 , B_1 , C_1 , D_1 . Найдите:
 - а) длину ребра A_1B_1 ;
 - б) косинус угла между векторами $\overline{A_1B_1}$ и $\overline{A_1C_1}$;
 - в) уравнение ребра A_1B_1 ;
 - Γ) уравнение грани $A_1B_1C_1$;
 - д) уравнение высоты, опущенной из вершины D_1 на грань $A_1B_1C_1$;
 - е) координаты векторов $\overline{e_1} = \overline{A_1B_1}$, $\overline{e_2} = \overline{A_1C_1}$, $\overline{e_3} = \overline{A_1D_1}$ и докажите, что они образуют линейно независимую систему;
 - ж) координаты вектора $\overline{\mathit{MN}}$, где M и N середины ребер A_1D_1 и $B_1C_{1,}$ соответственно;
 - 3) разложение вектора \overline{MN} по базису ($\overline{e_1}, \overline{e_2}, \overline{e_3}$), если $A_1(1, -1, 0), B_1(2, 3, 1), C_1(-1, 1, 1), D_1(4, -3, 5)$.
 - 2. Решите систему линейных уравнений:
 - а) методом Крамера;
 - б) методом Гаусса;
 - в) с помощью обратной матрицы:

$$\begin{cases} 2x + y - z = 2, \\ 3x + y - 2z = 3, \\ x + z = 3. \end{cases}$$

- **3.** Имеются 12 единиц товара в одинаковых упаковках. Известно, что в четырех из них товар первого сорта. Случайным образом отбирают 3 единицы товара. Вычислить вероятность того, что среди них:
 - а) только упаковки с товаром первого сорта;
 - б) ровно одна упаковка с товаром первого сорта.
 - **4.** В магазин поступила обувь от двух поставщиков. Количество обуви, поступившей от первого поставщика, в 2 раза больше, чем от второго. Известно, что в среднем 20% обуви от первого поставщика и 35% обуви от второго поставщика имеют различные дефекты отделки. Из общей массы наугад отбирают одну упаковку с обувью. Оказалось, что она не имеет дефекта отделки. Какова вероятность, что её изготовил первый поставщик?
 - **5.** Задан закон распределения дискретной случайной величины X:

X	- 2	- 1	0	1	2	3	4
p	0, 01	p	0, 23	0, 28	0, 19	0, 11	0, 06

Найдите:

а) неизвестную вероятность p;

- б) математическое ожидание M, дисперсию D и среднее квадратическое отклонение σ данной случайной величины;
 - в) функцию распределения F(x) и построить её график;
- г) закон распределения случайной величины Y, если её значения заданы функциональной зависимостью y = k 1k
- **6.** Известно, что в среднем 64% студентов потока выполняют контрольные работы в срок. Какова вероятность того, что из 100 студентов потока задержат представление контрольных работ:
 - а) 30 студентов;
 - б) от 30 до 40 студентов?